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LETTER TO THE EDITOR 

Sum rules for non-linear optical constants 
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t V;lisaP Laboraloly, Depanment of Physics, University of Joensuu, SF-80100, Finland 
t Research lnstitute of Applied Eleetricity, Hokkaido University, Sapporo 060, Japan 

Received 16 March 1992 

AbsIracL Sum rules for non-linear optical conslanu are given, using the concept of mm- 
plex contour integral and a Symmetry relation imposed on non-linear optical conslanu. 

The non-linear susceptibilities can be described as functions of several complex an- 
gular frequency variables [l]. Furthermore, they obey a dispersion relation [l] which 
resembles that for their linear counterpart. The dispersion relation for a non-linear 
susceptibility is valid provided that it is a holomorphic function of complex frequen- 
cies and it falls off quickly enough for high frequencies. The requirements are not 
severe and are fulfilled in most cases in non-linear optical processes. Sum rules were 
derived 11-41 for non-linear optical constants and the derivations for non-linear sus- 
ceptibilities were based on the use of the dispersion relation and the model of the 
anharmonic oscillator. 

In this work we give an alternative simple derivation of sum rules that does not 
rest on the dispersion relation and the anharmonic oscillator model. The derivation 
is based on the calculus exploited in the derivation of sum rules for linear optical 
constants in [5 ] .  

Let us assume that a non-linear optical constant (here we denote non-liinear 
susceptibility reflectivity or refractive index as a non-linear constant) of nth order, 
f(n)(Ljl, . . . ,Ljn),  is a holomorphic function with respect to complex angular fre- 
quencies Lj ; ,  i = 1 , .  . . , n, or some of them. Furthermore, we assume that f(") is 
holomorphic in complex half-planes with respect to all variables Lj j  or some of them. 
According to the theory of several complex variables each variable Lji can be treated 
independently. In other words f(") can be considered 3s a function of one complex 
variable with respect to certain L j j ;  the other frequencies are considered as constants 
with respect to Gi. It must be emphasized that the physically meaningful frequencies 
are the real frequencies Re 2;. 

The variety of frequencies appearing in the non-linear optical constant f(") can 
take into account multiphonon processes, i.e. cases where several independent laser 
beams are incident on the non-linear material. The simplest case appears in connec- 
tion with harmonic wave generation, where one laser beam is involved. As an example 
of a typical multiphonon process we mention the coherent anti-Stokes Raman spectra 
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(CARS) [6], which are obtained using two lasers. One laser has a fixed wavelength, 
whereas the wavelength of the other laser is tuned. In such a case we certainly have 
one complex angular frequency variable. An example of harmonic wave generation 
is the SHG from a metal surface.; SHG is ObSeNed when a high-energy laser pulse is 
incident on the metal 17. 

Next we give a sum rule by considering a function that is defined as follows: 

where a, p, . . . , v and N are positive integers. The function g is certainly holomor- 
phic with respect to Gi if f ( ” )  is holomorphic with respect to 3;. We can choose the 
integers in such a way that g = O(13il-1-6), 6 > 0, as +CO. Now we can treat 
g as a function of one complex variable. Then, as shown in [SI, we may write 

g ( i t , ,  . . . ,&;, . . . ,L&) dit,. (1) 

The frequency variables in the left-hand side of the equation (1) are real numbers. 
There are no poles inside the closed semicircle C, which is located in a complex 
half-plane. The arc of the closed contour C is denoted by A and its radius is given by 
R. According to our assumptions we can use the results of Cauchy’s integral theorem 
and Jordan’s lemma [SI to observe that the integrals on the right-hand side of (1) 
vanish. This means that we can write a sum rule 

W 

g(w,, . . . , wi,. . . , wn)  dw; = 0 .  (2) Lw 
Sum rules are practical when they are given for the spectral range [O,CO). This 
is ammplished by making use of the symmetry relation [5] f ’ ( w l , w i , .  . . , w n )  = 
f ( -w , ,  . . . , -wi,. . . , -wn) where * denotes the complex conjugate. The symmetry 
relation is generally valid and does not need the support of the anharmonic oscillator 
model. For an example of a sum rule we consider the SHG and set a = 0, (3 = 0 
and N = 1. We then have f ( w , w )  = Re x(*)(w,w) + i  Im x(*)(w,w).  Now we 
can write a sum rule 

m 

Re x(’)(w, W )  dw = 0 (3) 

which was obtained also in [l], but after using the dispersion relation and the an- 
harmonic oscillator model. The anharmonic oscillator model is not necessary for the 
derivation of sum rules. Such a model guarantees appropriate asymptotic fall-off of 
the non-linear susceptibility when lwil -+ CO. This asymptotic fall-off appears, re- 
gardless of the anharmonic model, always for high energies of the electromagnetic 
field. 

Unfortunately, in many non-linear optical processes the information about the 
real and imaginary parts of the non-linear optical constant is hidden in the measured 
intensity, which is usually proportional to the modulus of the non-linear optical con- 
stant. In such cases one may try to derive sum rules for the modulus itself, as was 
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done in recent studies [9,10]. One possibility for resolving the real and imaginary 
parts is to try to calculate the phase 'p of f'"), f = If(")leiq, in order to produce 
sum rules. In principle the calculation of phase angle is possible with the aid of 
the Hilbert transform 1111 or Kramers-Kronig relation [12,13]. The latter relation is 
widely used for the purpose of calculating linear optical "stants with the aid of an 
intensity reflectance spectrum. 

One of us (EMV) wishes to thank the Japanese Ministry of Education, The Academy 
of Finland and The Jenny and Antti Whuri Foundation for financial support during 
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